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Abstract
Experimental models using 2/3 partial hepatectomy or chemical injury have helped identify the pathways associated with liver 
regeneration (LR). Several microRNAs (miRNAs) have been identified as modulators of LR, but the molecular mechanisms 
underlying their activity are still unclear. Given the development of new therapies targeting miRNAs, this is an important 
question to address. This review discusses recent studies exploring the molecular mechanisms of miRNA-dependent regula-
tion of LR. In particular, the finding that circ-RBM23 promotes LR by sequestering cytoplasmic miRNA139-5p has furthered 
the understanding of the molecular mechanisms underlying circRNA activity. Interestingly, although miRNAs are generally 
considered negative regulators of their target mRNAs, miRNAs182-5p promotes LR by upregulating Cyp7a. Furthermore, 
mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) were shown to enhance LR after 2/3 partial hepatectomy 
by releasing miRNAs that inhibit gene expression to promote an anti-inflammatory response or miRNA-regulatory factors. 
Since the administration of MSCs-EVs has no hepatotoxic side effects, this may represent a therapeutic strategy to promote 
LR. miRNAs also mediate LR after chemical injury. This is the case for miR194 and miR21, whose downregulation activates 
pro-regeneration pathways to ameliorate acetaminophen-induced liver injury. In addition, the downregulation of miR21 has 
been shown to improve autophagy and haemostasis after acetaminophen overdose. Although further studies are needed to 
improve their efficacy as therapeutics, the evidence gathered in this review has led to a better understanding of the molecular 
mechanisms associated with the control of LR by miRNAs.
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Introduction
The liver is involved in many fundamental physiological pro-
cesses, such as bile production, plasma protein synthesis, nutri-
ent absorption and detoxification, vitamin storage, macronutrient 
metabolism, and support of the immune system.1 The liver paren-
chyma consists of two cell types: hepatocytes and cholangiocytes. 
In contrast, the non-parenchymal counterpart comprises hepatic 
stellate cells (HSCs), liver sinusoidal endothelial cells, and resi-
dent macrophages known as Kupffer cells (KCs).1 Liver function 
is primarily carried out by hepatocytes, which account for approxi-
mately 80% of liver mass.1

Adult hepatocytes are normally in a quiescent state; however, 
they can rapidly re-enter the cell cycle following various types of 

acute injuries, including drug-induced injury or hepatic resection. 
Hepatocyte regeneration is central to the restoration of normal liv-
er size and function, and impaired liver regeneration (LR) can lead 
to liver failure and patient death.2–5

Several studies have shown that microRNAs (miRNAs) are 
critical regulators of LR.5 However, most of these studies do not 
analyze the molecular mechanisms involved. Consequently, the 
scientific community is currently making significant efforts to 
characterize the molecular mechanisms. This seems extremely ur-
gent given the potential therapeutic applications of miRNAs for 
the treatment of diseases characterized by impaired LR. In this 
brief review, we summarized the most recent studies (from January 
2022 to December 2023) focusing on the molecular mechanisms 
involved in the regulation of LR after acute injury by miRNAs. 
The studies reported here have led to a better understanding of how 
miRNAs regulate LR after acute liver injury by 2/3 partial hepatec-
tomy (PH) or acetaminophen (APAP) overdose. Based on the data 
obtained, several miRNAs have been proposed as novel molecular 
targets for tissue repair and functional recovery of LR. Although 
further research is needed to determine the therapeutic efficacy and 
safety of miRNA-based therapies, the findings presented here may 
enable the development of new treatments for liver diseases.
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The most common in vivo experimental model for studying LR 
is 2/3 PH in rodents.6 After 2/3 PH, hypertrophy occurs, followed 
by cell proliferation, with hyperplasia being the major contribu-
tor to liver mass recovery.7 In response to surgery, the remaining 
hepatocytes proliferate until the original organ size is restored 
without activation of progenitor cells.8 LR undergoes three main 
phases: i) priming or initiation, which is associated with growth 
factor (GF) activation and cytokine release; ii) proliferation, which 
is promoted by immediate early gene or transcription factor activa-
tion; and iii) termination, which is likely driven by signaling path-
ways leading to inhibition of the regenerative response. Initiation 
of the LR response is partly related to an early increase in portal 
vein flow and pressure that produces shear stress on liver sinusoi-
dal endothelial cells.9

Briefly, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-
6) are two key regulators of the initiation phase. Their production 
is mediated by the activation of the nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) in KCs.2,10 Interac-

tion with KCs makes hepatocytes more susceptible to proliferative 
stimuli and contributes to the progression of LR.11 The increase in 
IL-6 triggers hepatocyte entry into the G1 phase by acting on Janus 
kinase and inducing phosphorylation of signal transducer and acti-
vator of transcription 3 (STAT3).2,12,13

Another cytokine that plays an important role in LR is IL-17.14 
IL-17 regulates the expression of key molecules such as IL-6, C/
EBPβ, and the recently identified A20, which, in turn, reduces in-
flammation and promotes cell proliferation through IL-6/STAT3 
and NF-κB signaling.15–18 In addition, high levels of IL-17 inter-
fere with the activation of natural killer T cells, which stimulate 
LR through IL-4 production.16

Hepatocyte progression into the cell cycle is ensured by GF-
mediated signaling, leading to the transcription of delayed early 
genes encoding cell cycle regulatory proteins, namely cyclins.19–21 
The most important factors in this scenario are hepatocyte growth 
factor (HGF) and specific ligands of epidermal growth factor re-
ceptor (EGFR).9 Proliferating hepatocytes release many GFs that 

Fig. 1. miRNA changes modulating initiation, proliferation, or termination phases of liver regeneration. Initiation phase. Early after PH, the downregula-
tion of miRs targeting Socs3 and miR301 targeting Cdk1 induces genes that inhibit cell proliferation. The same effect is also achieved by upregulating the 
miR34 family through the downregulation of their target genes. Conversely, the upregulation of miR183 positively mediates cell proliferation by inhibit-
ing the gene Pdcd6, while the downregulation of miR369-3p promotes the G0-G1 transition by upregulating Notch3. Proliferation phase. Upregulation of 
miR182-5p promotes LR by inducing hepatocyte-HSC crosstalk, leading to hepatocyte proliferation, and by promoting M2 polarization in KCs through the 
downregulation of the FOXO1/TLR4 pathway. The downregulation of miR139-5p also promotes the proliferative phase of LR by upregulating its target Rrm2, 
which activates hepatocyte proliferation via the AKT/mTOR signaling pathway. Inhibitory signals also regulate the proliferation phase of LR. Upregulation of 
miR34b-5p negatively modulates hepatocyte proliferation by downregulating Pdk1 gene expression, while the upregulation of miR194 and miR125a has the 
same effect by downregulating β-catenin signaling and the STAT3/P-STAT3/JUN/BCL2 axis, respectively. Termination phase. At later time points after 2/3 PH, 
upregulation of miR141-3p possibly mediates LR termination by inhibiting the Cdk8 gene, while p53-induced upregulation of miR34a exerts the same effect 
through the activation of the pro-apoptotic p53/miR34a/SIRT1 positive loop. Green arrow: ACTIVATION; red arrow: INHIBITION. Akt, protein kinase B; BCL-2, 
B-cell lymphoma 2; HSC, hepatic stellate cells; KCs, Kupffer cells; LR, liver regeneration; miRNA, microRNA; mTOR, mammalian target of rapamycin; P-STAT3, 
phospho-Signal transducer and activator of transcription 3; SIRT1 , sirtuin 1; STAT3, signal transducer and activator of transcription 3.
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stimulate the proliferation of non-parenchymal cells, thus orches-
trating the regeneration response.9

Hepatocyte proliferation stops immediately when the original 
liver mass is restored, during the termination phase. This event 
is likely promoted by the activation of signal transduction path-
ways associated with cell growth inhibition, such as those medi-
ated by transforming growth factor beta (TGF-β)/TGF-β receptor 

(TGFβR),22 mammalian target of rapamycin (mTOR), and cell-
extracellular matrix interaction.23–25

In clinical settings, LR occurs after chemical injuries. Among 
the hepatotoxic agents used to study LR, APAP overdose is par-
ticularly significant, as it represents the leading cause of acute 
liver failure (ALF) in the Western world.9,26 APAP hepatotoxicity 
develops mainly in three phases.26 In the initiation phase, APAP 

Table 1.  miRNAs involved in liver regeneration after acute liver injury

miRNA Sample source Effect Reference

miRs targeting Socs3 
miR301, miR34 family

Mouse liver tissues at early 
time points after 2/3 PH

Inhibition of mitogenic signals early after PH. Pal et al.41

miR182-5p Mouse liver tissues isolated three 
days after 2/3 PH; Primary mouse 
hepatocyte cultures; Primary mouse 
hepatocytes/primary HCS co-cultures

Promotes Cyp7a1/colic acid (CA) signaling-
dependent HSCs activation and their 
Hh ligand production which promote 
hepatocyte proliferation during LR.

Xiao et al.52

Liver tissues from hepatectomized mice 
treated with Hp-MSC-derived Exo

miR182-5p contained in Hp-Exo promotes 
LR via inducing M2 macrophage polarization 
through the FOXO1/TLR4 signaling pathway.

Xu et al.57

miR183 Liver tissues from hepatectomized rats 
isolated from 0 to 168 h; BRL3A cell line

Promotes the initiation of liver proliferation 
and accelerates the cell cycle of hepatocytes by 
reducing the expression of its target gene Pdcd6.

Hou et al.51

miR369-3p Liver tissues from hepatectomized rats 
isolated at 0, 6, and 24 h after surgery

Regulates Notch3 expression in the initial 
phase of LR to promote G0-G1 transition.

Zhang 
et al.44

miR34b-5p Liver tissues from hepatectomized 
mice isolated at 48 h after 
surgery; NCTC 1469 cell line

Negatively modulates hepatocyte proliferation 
by downregulating Pdk1 expression 
during the progression stage of LR.

Lei et al.53

miR34a Liver tissues from hepatectomized mice Regulates the termination phase of liver 
regeneration as a part of the pro-apoptotic 
p53/miR34a/SIRT1 positive loop.

Gong et 
al.55

miR141-3p Perfused rat livers and rat primary 
hepatocytes in response to hypoosmolarity-
induced cell swelling; Liver tissues from 
hepatectomized rats (0–14 days); Rat 
primary hepatocytes; Huh7 cell line

Exerts a central role in the osmo- and 
mechanical sensing of hepatocytes.
 Increases after 2/3 PH, possibly mediating 
LR termination through Cdk8 inhibition.

Bardeck 
et al.56

miR125a Liver tissue of hepatectomized rats 
at 24 h after PH; BRL3A cell line

Represses hepatocyte proliferation and 
the proliferation stage of LR by affecting 
the axis of STAT3/P-STAT3/JUN/BCL2.

Zhang 
et al.54

miR194 Liver tissue from miR192/194 KO/WT 
mice treated with APAP; Liver tissues 
from hepatectomized miR192/194 KO/
WT mice (0–7 days); AML-12 cell line

Increases liver injury after APAP 
overdose and negatively regulated LR by 
downregulating the β-catenin signaling.

Chang 
et al.59

miR21 Liver tissues from miR21 KO/
WT mice treated with APAP

Inhibits LR by downregulating 
the β-catenin signaling.
 Retards the autophagic breakdown of damaged 
organelles and misfolded protein response.
 Directly modulates the increased expression 
of the hypofibrinolytic molecule PAI1

Huffman 
et al.60

miR139-5p Liver tissues from hepatectomized 
mice treated with hPMSCs-EVs 24 
h before 2/3 PH; LO2 cell line

Promotion of LR mediated by circ-RBM23 
contained in hPMSCs-EVs which sponges 
miR139-5p in hepatocytes to inhibit the 
suppression of its target gene Rrm2.

Li et al.58

AML-12, alpha mouse liver 12 cells; APAP, acetaminophen; BCL-2, B-cell lymphoma 2; BRL3A, rat fibroblast-like cell line; FOXO1/TLR4, forkhead box protein O1/toll-like receptor4; 
HCS, hepatic stellate cells; Hh, Hedgehog; hPMCSCs-EVs, exosomes isolated from human placenta-derived mesenchymal cells; Hp-MSC-derived Exo, exosomes derived from bone 
marrow-derived hypoxic mesenchymal stem cells; Huh7, human hepatic cell line; KO, knock-out; LO2, human fetal hepatocyte cell line; LR, liver regeneration; miRNA, microRNA; 
NCTC 1469 cells, mouse epithelial-like cell line; PAI-1, plasminogen activator inhibitor-1; PH, partial hepatectomy; P-STAT3, phospho-Signal transducer and activator of transcrip-
tion 3; SIRT1, sirtuin 1; STAT3, signal transducer and activator of transcription 3; WT, wild type.
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overdose leads to the accumulation of its reactive metabolite, N-
acetyl-p-benzoquinoneimine. Subsequently, the formation of radi-
cals and cytokines, along with macrophage activation, results in 
centrilobular hepatocellular necrosis. In the progression phase, the 
initial acute liver injury (ALI) worsens. Proteolytic enzymes re-
leased from dying hepatocytes damage neighboring hepatocytes, 
exacerbating the injury. Finally, the injury phases of APAP hepa-
totoxicity are followed by a recovery phase, during which com-
pensatory hepatocellular proliferation occurs, restoring liver size. 
If the regenerative response is ineffective, ALI progresses to ALF, 
which is associated with multi-organ failure and death.26 Similar 
to the 2/3 PH model, early dose-dependent activation of EGFR and 
HGF receptor (MET) also occurs in mice after APAP overdose.27,28 
However, in this case, LR is more dependent on EGFR signaling, 
suggesting that alternative proliferation pathways cannot compen-
sate in a toxic and inflammatory environment where timely LR is 
critical.9 The expression of TNF-α and IL-6 and their downstream 
signaling pathways, as well as the concentrations of vascular en-
dothelial growth factor (VEGF) and its receptors, also increase 
after APAP overdose in mice.27 LR after APAP hepatotoxicity is 
dose-dependent and positively correlated with injury but is signifi-
cantly impaired beyond a threshold. This impairment is likely due 
to the persistent activation of cell cycle arrest signaling pathways 
and DNA damage, without activation of DNA repair mechanisms 
in perinecrotic hepatocytes.26,27,29,30 A key role for TGF-β1 in pro-
moting cell cycle arrest in uninjured perinecrotic hepatocytes has 
also been demonstrated in mice.29 Despite these findings, the pro-
cesses involved in LR during APAP hepatotoxicity are still poorly 
understood; further studies are crucial for developing regenerative 
therapies for the treatment of drug-induced ALF.9

miRNAs are endogenous, single-chain, non-coding RNAs 
that are 18–25 nucleotides long. They bind to complementary se-
quences on protein-coding mRNAs, causing their degradation or 
translational repression.31 miRNAs control various cellular and 
developmental processes, and dysregulation of their expression is 
associated with many human diseases.32–34 Therefore, circulating 
miRNAs are considered potential biomarkers for a wide range of 
diseases.34

Several studies have shown the involvement of miRNAs in the 
regeneration response. During LR, miRNAs provide the necessary 
dynamics for liver cells to promptly adapt to an altered environ-
ment or signaling messages.35 These changes in miRNA expression 
drive hepatocyte proliferation, innate immunity, and angiogenesis. 
Conversely, impaired LR is associated with specific miRNAs that 
enhance cell cycle arrest and promote DNA methylation.5 After 
2/3 PH in rodents, the priming phase of LR is associated with sev-
eral miRNAs targeting genes involved in cell apoptosis, survival, 
cell cycle, inflammation, metabolism, etc.5 Previous studies have 
shown the most significant change in miRNA profiles occurs dur-
ing the peak of DNA replication, which is 24 h after surgery in 
the rat liver.36 Genome-wide microarray studies have revealed a 
biphasic miRNA expression pattern in hepatectomized rats, show-
ing upregulation of approximately 40% of miRNAs early after sur-
gery, while up to 70% were downregulated 24 h post-PH.37 Sub-
sequent analyses suggested that the early upregulation of specific 
miRNAs might mediate the downregulation of miRNA process-
ing genes, leading to a global decrease in miRNAs observed 24 
h after surgery.37 It is hypothesized that the early phase after 2/3 
PH is associated with the upregulation of specific miRNAs that 
promote the priming phase of LR, where hepatocytes are refrac-
tory to growth signals. Their downregulation 24 h after surgery is 
ultimately required for efficient liver tissue recovery.37

Overall, after 2/3 PH, some miRNAs are overexpressed while 
others are under expressed. These dynamic variations contribute 
to the modulation of the complex and articulated process of LR.38 
As discussed in detail elsewhere, the best-studied miRNA in LR is 
miR21, which regulates LR either positively or negatively by tar-
geting multiple genes.5 However, the exact mechanisms by which 
individual miRNAs regulate LR are still largely unknown.

Following APAP overdose, several miRNAs are readily detect-
able in the blood of mice and humans even before liver enzyme 
levels increase, and their levels correlate with the histopathology of 
liver degeneration. Therefore, miR122 and miR192, among others, 
are considered reliable biomarkers for APAP-induced hepatotoxic-
ity.35,39,40 However, their involvement in LR cannot be excluded.

miRNAs as modulators of LR after 2/3 PH

Initiation phase
Recently, Pal et al.41 performed a transcriptomic and miRNomic 
analysis of livers from mice sacrificed at early time points after 
2/3 PH (LR). Although a large number of genes are deregulated 
after 2/3 PH, most are thought to be related to both the reconstitu-
tion of liver mass and the stress response. In addition, miRNAs 
controlling negative regulators of the cell cycle, such as miR106a-
5p, miR340-5p, miR196b-3p, and miR455-5p targeting Socs3, 
and miR301 targeting Cyclin-dependent kinase inhibitor 1a, were 
downregulated at early time points after surgery, accompanied by 
the increased expression of their target genes. Additionally, there 
was a strong upregulation of the oncosuppressor miR34 family, a 
known mediator of the termination phase of LR, after 2/3 PH.42 
The activation of inhibitory signals after surgery is consistent with 
the fact that the initiation phase of LR is a preparatory event char-
acterized by refractoriness to DNA synthesis.

Overall, these results support the concept that mitogenic signal-
ing is actively inhibited early after surgery.37,43

In a recent study by Zang et al.,44 Large-scale quantitative 
detecting and analyzing was used to determine the regulation of 
hepatocyte proliferation by competing endogenous RNAs during 
the initiation phase of LR in rats. Competing endogenous RNAs 
include noncoding RNAs, mRNAs, and transcribed pseudogenes 
that regulate each other by competing for shared miRNAs.45 
Noncoding RNAs include circular noncoding RNAs (circRNAs), 
which increase the complexity of RNA regulatory networks by act-
ing as miRNA sponges, thereby repressing the functional activ-
ity of miRNAs.46 In the study by Zang et al.,44 miR369-3 and the 
circRNA rno-Rmdn 2_0006, which interacts with miR369-3 and 
inhibits its activity, were found to affect the expression of G0 and 
G1 phase genes during LR by regulating the expression of Notch3. 
Notch3, a member of the Notch family, promotes cell prolifera-
tion.47–49 Overall, the results indicated that Notch3 mRNA is af-
fected by miR369-3p at 0 h. Inhibition of Notch3 by miR369-3p 
at 0 h leads to inhibition of Notch3-mediated activities, such as 
the upregulation of G1 phase genes and the inhibition of G0 phase 
genes, resulting in hepatocytes remaining in the G0 phase. How-
ever, the decreased expression of miR369-3p 6 h after surgery, 
possibly due to inhibition mediated by rno-Rmdn 2_0006, leads 
to an increase in Notch3 protein, which promotes the expression 
of G1 phase genes and inhibits the expression of G0 phase genes. 
Consequently, the hepatocytes enter the G1 phase. As reported in 
detail elsewhere, activation of Notch signaling during LR plays a 
key role in regulating other important events besides hepatocyte 
proliferation, such as biliary regeneration and neovascularization 
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of the newly formed liver tissue.50

These results have shown that miR369-3p-mediated Notch3 
regulation is crucial in triggering the initial phase of LR (Fig. 1, 
Table 1).41,44,51–60 This finding represents progress in characteriz-
ing the molecular mechanisms underlying LR initiation following 
2/3 PH.

Another miRNA that has recently attracted attention for its 
role in LR is miR183. Based on previous studies showing strong 
miR183 upregulation early after 2/3 PH, Hou et al. recently at-
tempted to characterize the molecular mechanisms underlying 
miR183 upregulation during LR in hepatectomized rats.51,61 The 
results showed that the expression levels of miR183 peaked at 2 
h and 120 h after surgery. Consistently, upregulation of miR183 
induced the transition to the G0/G1 phase and subsequent entry 
into the S phase in a rat fibroblast cell line (BRL-3A), suggest-
ing that miR183 may promote LR by stimulating cell proliferation. 
Interestingly, the expression of the miR183 target Programmed 
cell death protein 6 (Pdcd6) was inversely correlated during LR. 
The Pdcd6 gene encodes a calcium-binding protein that plays an 
important role in promoting apoptosis.62 In addition, the Pdcd6 
protein has been shown to bind to VEGFR2, possibly inhibiting 
VEGFR2-mediated angiogenesis.63 Therefore, the inhibition of 
Pdcd6 by miR183 upregulation in the initiation phase of LR might 
be related to the promotion of angiogenesis as well as the facilita-
tion of liver proliferation. Overexpression of miR183 was able to 
positively regulate LR in hepatectomized rats. In vitro experiments 
showed that miR183 directly regulated the expression of the Pdcd6 
gene, which was inversely correlated with miR183 expression. Ac-
cordingly, inhibition of miR183 or overexpression of Pdcd6 result-
ed in cell cycle arrest, while upregulation of miR183 or silencing 
of Pdcd6 had the opposite effect.

Overall, the study by Hou et al.51 showed that overexpression 
of miR183 can promote cell cycle initiation and acceleration in 
hepatocytes by reducing Pdcd6 expression (Fig. 1, Table 1). Al-
though the role of Pdcd6 in mediating the effects of miR183 on LR 
requires further characterization, this finding has helped clarify the 
role that overexpression of miR183 plays during LR.

Proliferation phase
The LR is strongly influenced by the dynamic interaction between 
different resident cell types. In particular, HSCs contribute to regu-
lating LR after 2/3 PH by releasing various GFs and cytokines. 
However, the molecular mechanisms that stimulate the secretory 
activity of HSCs after surgery still need elucidation.64,65 Recently, 
Xiao et al.52 have shown that miR182-5p plays a key role in regu-
lating LR in mice by promoting hepatocyte-HSC crosstalk. Their 
results demonstrated that in mouse models where miR182-5p was 
either downregulated or upregulated, hepatocyte proliferation 
after 2/3 PH correlated positively with miR182-5p expression.52 
However, overexpression or inhibition of miR182-5p had no sig-
nificant effect on cell proliferation in primary hepatocytes, while 
it stimulated proliferation when hepatocytes were cultured with 
non-parenchymal cells. Previous in vitro experiments revealed that 
hepatocyte-derived miR182-5p promotes hepatocyte proliferation 
via HSC-dependent activation of the Hedgehog (Hh) signaling 
pathway in hepatocytes.66,67 Accordingly, Xiao et al. found that 
overexpression of miR182-5p in hepatocytes during LR resulted 
in Cyp7a1-mediated production of colic acid (CA) from hepato-
cytes.52 Once released in the liver, CA promoted the production of 
Hh ligands from HSCs, which activated the Hh signaling pathway 
in hepatocytes, triggering their proliferation. Interestingly, the ex-
pression of Cyp7a1 was strongly suppressed 24 h after surgery but 

gradually increased in the proliferation phase, associated with the 
upregulation of miR182-5p. However, the mechanisms underlying 
the positive role of miRNA182-5p in the translation of the Cyp7a1 
gene have not been characterized in this study and require further 
analysis.

Notably, conflicting results have been reported regarding the 
temporal activation of miRNA182-5p in rats and mice, placed in 
the initiation phase of rat LR by Geng et al.61 and in the prolifera-
tion phase of mouse LR by Xiao et al.52 However, while in rat liver 
miR182-5p, whose expression was analyzed from 2 h to 168 h, 
seems to effectively regulate the initiation phase, its involvement 
in both the initiation and proliferation phases cannot be excluded 
in mice, as the earliest time point analyzed in mouse livers was 24 
h. Further studies could help better clarify the role of miRNA182-
5p in LR.

Overall, the study by Xiao et al.52 helped clarify the molecu-
lar mechanisms that stimulate HSC secretory activity after 2/3 PH 
by revealing a novel molecular mechanism based on the crosstalk 
between hepatocytes and HSCs, which is promoted by the activa-
tion of miR182-5p (Fig. 1, Table 1). Moreover, upregulation of 
miR182-5p has been shown to mediate the proliferation phase of 
LR in mice by positively regulating Cyp7a1 expression in hepato-
cytes. Therefore, this study provides new evidence for the positive 
regulation of mRNA expression by miRNAs.

Recently, Lei et al.53 investigated the regulatory networks of 
long noncoding RNA-miRNA-mRNA involved in LR in hepatec-
tomized mice 48 h after surgery. Analysis of genes differentially 
expressed during LR revealed associations with biological pro-
cesses closely related to hepatocyte proliferation, involving impor-
tant signaling pathways, such as Wnt, mitogen activated protein 
kinase (MAPK), Ras, and mTOR, which are highly interconnect-
ed.53 Regarding miRNAs, Lei et al.53 found that the upregulation 
of miR34b-5p negatively modulated the expression of 3-Phospho-
inositide-dependent kinase 1 (Pdk1) mRNA and protein during the 
progression of hepatocyte proliferation. The Pdk1 gene encodes a 
component of the PI3K/PDK1/Akt signaling pathway, which plays 
a central, albeit controversial, role in LR after PH.68–70 In Lei’s 
study, in vitro experiments showed that the interaction between 
miR34b-5p and Pdk1 mRNA led to the inhibition of hepatocyte 
proliferation.53

This study, for the first time, characterized the role of the 
miR34b-5p/PDK1 axis in hepatocyte proliferation and demon-
strated its negative modulation of this process. Based on this find-
ing, the miR34b-5p/PDK1 axis may represent a novel molecular 
target for regulating LR in clinical settings.

miR125a-5p has been shown to negatively modulate the pro-
liferation and metastasis of hepatocarcinoma (HCC) and viral 
replication in the liver.71,72 In addition, its downregulation was 
recently found to protect against chemical liver injury by modu-
lating hepatocyte proliferation and apoptosis.73 Despite reports of 
miR125a upregulation 2 h after 2/3 PH, its role in LR has not been 
fully characterized. Therefore, Zhang et al.54 recently investigated 
the role of miR125a-5p in LR in rats sacrificed 24 h and 30 h after 
surgery. Their results indicated that miR125a was strongly down-
regulated in rat livers after 2/3 PH. Moreover, cell transfection ex-
periments showed that the upregulation of miR125a suppressed 
the G1/S transition as well as the proliferation phase in BRL-3A 
cells. Proliferation signaling pathway screening revealed an in-
verse correlation between miR125a and Stat3 in regenerating rat 
livers and BRL-3A cells. STAT3 is a complex transcription factor 
that can regulate numerous processes such as apoptosis, prolifera-
tion, differentiation, and survival.74 Recent studies have reported 
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that STAT3 can either promote or suppress tumorigenesis depend-
ing on the oncogenic environment, alternative mRNA splicing, 
and integration of different signals.74 Previous studies in human 
cancer samples demonstrated the synergistic activity of STAT3 and 
c-JUN proteins, leading to the identification of the pro-survival C-
JUN or the anti-apoptotic BCL-2 genes as downstream targets of 
STAT3 in tumorigenesis.74 Accordingly, Zhang et al.54 found that 
the upregulation of miR125a was correlated with the inhibition of 
the expression of STAT3, p-STAT3, JUN, and BCL2 in cultured 
hepatocytes and livers from hepatectomized mice.

Overall, this study characterized the role of miR125a in LR and 
demonstrated that it acts as a negative regulator of the proliferation 
phase of LR by affecting the STAT3/P-STAT3/JUN/BCL2 axis 
(Fig. 1, Table 1). Since this axis is also involved in promoting hu-
man carcinogenesis, miR125a has been proposed as a potentially 
promising new molecular target for both modulating LR and treat-
ing liver carcinomas.54

Termination phase
Previous studies have demonstrated that miR34a inhibits LR after 
2/3 PH in rats.42 Specifically, it acts as a direct target of p53 and is 
part of a positive feedback loop with p53 and the Silent Informa-
tion Regulator 1 (SIRT1) gene. In this loop, p53 activates miR34a, 
which in turn induces acetylation and transcription of p53 by re-
pressing the nicotinamide adenine dinucleotide-dependent dea-
cetylase SIRT1, ultimately promoting cell apoptosis.75 Building on 
this understanding, Gong et al.55 recently aimed to further char-
acterize the involvement of the p53/miR34a/SIRT1 positive feed-
back loop in LR termination in hepatectomized mice. The results 
showed that this loop was strongly activated in the late stage of 
LR. Furthermore, the overexpression of p53 increased hepatocyte 
apoptosis during LR and anticipated its termination. Conversely, 
knock-down of miR34a abolished the p53/miR34a/SIRT1 positive 
feedback loop and suppressed LR termination. Interestingly, in-
creased p53 expression during the initiation phase failed to stimu-
late the p53/miR34a/SIRT1 positive feedback loop.

Previous studies have shown that the activation of miR34a by 
p53 can be inhibited by the farnesoid X receptor/small heterodi-
mer partner (FXR/SHP) signaling pathway. Since the ligands of 
FXR also include bile acids (BAs),76 Gong et al.55 investigated the 
involvement of BAs in LR as activators of this signaling pathway. 
The data obtained showed that the total amount of BAs was higher 
in the early phase of LR and lower in the termination phase, with 
a gradual increase in the proportion of T-β-muricholic acid (MCA) 
in the total amount of BAs. Consistent with the identification of 
T-β-MCA as an FXR antagonist,77 subsequent analyses showed 
that T-β-MCA suppressed the FXR/SHP signaling pathway and 
enhanced the proapoptotic effects of the p53-activated positive 
feedback loop p53/miR34a/SIRT1, both in vitro and in vivo. Since 
impairment of LR termination may lead to hepatocarcinogenesis, 
the relationship between the p53/miR34a/SIRT1 positive feedback 
loop and tumorigenesis in human HCCs was next investigated. 
The results showed that this positive feedback loop was deficient 
in p53-mutated and p53-deficient tumors.55

Overall, this study has shed light on the molecular mechanisms 
associated with the termination phase of LR by better character-
izing the involvement of the p53/miR34a/SIRT1 positive feedback 
loop in mediating the process and identifying the factors involved 
in its regulation (Fig. 1, Table 1). Furthermore, a link between de-
ficiency in the p53/miR34a/SIRT1 positive feedback loop and the 
promotion of hepatocarcinogenesis was discovered, providing new 
insights for the treatment of malignant liver diseases.

The initiation of cell proliferation can be controlled by changes 
in cell volume.78 In particular, it has been reported that hepatocyte 
swelling induced by hypoosmolarity or insulin triggers hepato-
cyte proliferation mediated by integrin and c-Src kinase-depend-
ent EGFR activation.79,80 Nevertheless, the role of miRNAs in 
hepatocyte swelling-associated osmosignaling is largely unknown. 
Therefore, Bardeck et al.56 recently analyzed the role of miRNAs 
in rat livers perfused with a hypoosmotic medium to induce cell 
swelling. It was found that the expression of miR141-3p was up-
regulated in perfused rat livers, which was accompanied by the 
downregulation of its target genes. The same results were obtained 
in primary hepatocytes under hypoosmotic conditions. The up-
regulation of miR141-3p required Src-mediated activation of Erk 
and p38 MAPK, known downstream effectors of hypoosmotical-
ly induced signaling pathways.56,80 Furthermore, the addition of 
colchicine to the perfusion buffer prevented the upregulation of 
miR141-3p under hypoosmotic conditions. Since colchicine trig-
gers depolymerization of the microtubule network, this suggests 
a possible involvement of miR141-3p in microtubule formation 
and inhibition of proteolysis associated with hepatocellular swell-
ing.81 Overall, these data suggest the involvement of miR141-3p in 
hypoosmolarity-induced osmotic signaling pathways.

miR141 is frequently dysregulated in malignant tumors, where 
it controls epithelial-to-mesenchymal transition, apoptosis, prolif-
eration, and metastasis, strongly influencing tumor development 
and progression.82 Among the genes that were downregulated at 
hypoosmolarity in association with upregulation of miR141-3p, 
Bardeck et al. identified Cyclin-dependent kinase 8 (Cdk8) as a di-
rect target of miR141-3p. Since Cdk8, as part of the mediator com-
plex, regulates the transcription of almost all RNA polymerase II-
dependent genes, and miR141-3p plays a role in cell proliferation, 
their expressions were also analyzed in hepatectomized rats.56,82,83

Interestingly, miR141-3p upregulation and Cdk8 mRNA down-
regulation were simultaneously detected three days after surgery, 
indicating their possible involvement in the termination phase of 
LR. Moreover, overexpression of miR141-3p inhibited both the 
expression of its target genes in primary hepatocytes and the prolif-
eration of human hepatoma cells.56 In the latter case, upregulation 
of miR141-3p inhibited tumor cell proliferation without affecting 
their viability, suggesting the triggering of a counterregulatory an-
tiproliferative response.

During hypoosmotically induced cell swelling, compression 
and stretching of liver cells occur.84 Similarly, mechanical stretch-
ing of hepatocytes can be observed after a 2/3 PH, due to the flow 
of blood volume from the portal vein through a liver reduced to 
1/3 of its normal mass. Consistent with this, Bardeck et al.56 found 
miR141-3p upregulation and decreased Cdk8 expression, albeit 
not significantly, in primary rat hepatocytes seeded in a stretch 
chamber.

Although the importance of miR141-3p and Cdk8 as regula-
tors of LR needs further characterization, these data suggest a cen-
tral role of MAPK-mediated miR141-3p activation in hepatocyte 
osmo- and mechanosensing. MAPK-mediated proliferation signal-
ing may increase miR141-3p to create a negative feedback loop, 
preventing excessive hepatocyte growth during liver repair (Fig. 
1, Table 1).

Regulation of LR after 2/3 PH by miRNAs contained in mes-
enchymal stem cell (MSC)-derived extracellular vesicles
Infusion of MSCs after 2/3 PH has been shown to improve the 
LR response.85 MSCs are a heterogeneous group of multipotent 
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stromal cells present in many tissues and endowed with therapeutic 
properties in acute and chronic liver diseases due to their self-re-
newal potential, differentiation capacity, and immunomodulatory 
role.86 Recently, accumulating evidence has shown that the secre-
tion of extracellular vesicles (EVs) by MSCs strongly influences 
their biological functions.87 Among EVs, exosomes (Exo) form a 
group characterized by a diameter of 30 to 160 nm, which may me-
diate intercellular transitions by transferring various biologically 
active substances such as proteins, mRNA, and miRNAs.87 These 
miRNA-containing EVs can be taken up by neighboring cells or 
enter the circulation, allowing miRNA-dependent modification of 
gene expression in recipient cells both locally and distally. MSC-
Exo have previously been shown to replace MSCs in improving 
recovery in animal models of LR.88 Based on this, Xu et al.57 re-
cently investigated the ability of MSCs to improve LR after 2/3 
PH in mice and the potential involvement of Exo in this event. 
Since hypoxia treatment stimulates the proliferation of MSCs, this 
study was performed using bone marrow-derived (BM) hypoxic 
MSCs (Hp-MSCs).57,89 The results showed that BM-Hp-MSCs 
improve LR in hepatectomized mice mainly through the secretion 
of exosomes. Accordingly, treatment with exosomes from BM-
Hp-MSCs (Hp-Exo) promoted LR after 2/3 PH and reduced liver 
injury in hepatectomized animals compared to controls. Remark-
ably, Hp-Exo were found to be taken up by liver macrophages, 
which subsequently underwent M2 polarization, resulting in anti-
inflammatory and tissue repair responses.57 miRNA array analysis 
showed the enrichment of miR182-5p in Hp-Exo, suggesting its 
contribution to the enhancement of their anti-inflammatory ef-
fects. Accordingly, miR182-5p inhibition partially abrogated the 
beneficial effects of Hp-Exo on macrophage M2 polarization both 
in vitro and in vivo.57 The Foxo1 gene, a known regulator of mac-
rophage polarization through toll-like receptor (TLR)-mediated 
signaling, was identified as the target of miR182-5p in inducing 
M2 polarization of KCs.

Taken together, these results suggest that miR182-5p promotes 
LR after 2/3 PH by inducing Hp-Exo-mediated M2 macrophage 
polarization, targeting the FOXO1/TLR4 pathway (Fig. 1, Table 
1). These results, similar to those of Xiao et al., highlight the role 
of miRNA182-5p in promoting LR.52,57

The effects of MSC-derived EVs on LR were also investigated 
by Li et al.58 In this study, mice were intravenously administered 
EVs isolated from human placenta-derived MSCs (hPMSCs-EVs) 
24 h before 2/3 PH. The data obtained showed that pretreatment 
with hPMSCs-EVs promoted LR and exerted a hepatoprotective 
effect. Molecular analysis showed that hPMSCs-EVs contained 
circRNAs. Among these, circ-RBM23 showed the highest ex-
pression, and its silencing significantly reduced hepatocyte pro-
liferation in vitro, suggesting that its upregulation could stimulate 
hepatocyte growth. Bioinformatic analysis led to the identification 
of miR139-5p as the most important potential miRNA target of 
circ-RBM23, and molecular analyses confirmed their interaction. 
Furthermore, upregulation of circ-RBM23 was associated with a 
decrease in miR139-5p in 2/3 PH animals. Taken together, these 
results suggest that circ-RBM23 may sponge miR139-5p to inhibit 
its function in hepatocytes during LR. Inhibition of miR139-5p by 
circ-RBM23 resulted in the upregulation of the miR139-5p target 
gene Ribonucleotide reductase regulatory subunit M2 (Rrm2), 
which encodes an enzyme that catalyzes deoxyribonucleotide 
synthesis.90 Upregulation of Rrm2 in hepatocytes treated with 
hPMSCs-EVs and in mice in which circ-RBM23 was silenced 24 
h before surgery promoted hepatocyte proliferation via the protein 
kinase B (AKT)/mTOR signaling pathway, a known mediator of 

RRM2 action.91,92 The study by Li et al. is the first to report a 
link between circ-RBM23 and LR.90 Overall, these results show 
that circ-RBM23 delivered by hPMSCs-EVs promotes hepatocyte 
proliferation by sponging miR139-5p via the RRM2/AKT/mTOR 
signaling pathway (Fig. 1, Table 1). Remarkably, the prolifera-
tive effect of hPMSCs-EVs in hepatectomized mice was devoid 
of hepatotoxic effects, indicating the potential usefulness of these 
vesicles as therapeutic agents for tissue repair and functional re-
covery in LR.

miRNAs as modulators of LR after chemical injury
Several studies have shown that miR192/194 are suitable biomark-
ers for ALI due to their rapid serum increase after liver injury.93 To 
characterize the role of miR192/194 in ALI, Chang et al.59 gener-
ated miR192/194 knock-out mice and established an animal model 
of ALF by APAP administration. Remarkably, the livers of the mu-
tant mice appeared physiologically normal, with no spontaneous 
damage associated with the loss of miR192/194. The data obtained 
showed that depletion of miR192/194 protected the liver from 
APAP-induced damage. Accordingly, loss of miR192/194 promot-
ed liver cell proliferation and reduced cell death after APAP treat-
ment. In addition, a strong upregulation of molecules that protect 
the liver from APAP damage, such as FXR and hepatic glutathione 
(GSH), was also observed.94,95 Overall, these data suggest that the 
loss of miR192/194 may protect the liver from APAP by activat-
ing genes that promote liver proliferation, reduce cell death, and 
increase GSH synthesis. The same study also examined LR in both 
mutant and control mice one to seven days after 2/3 PH, which 
is a better-synchronized proliferation model compared to APAP 
treatment. The results confirmed that the mutant livers proliferated 
more than the control livers during LR. Moreover, the expression 
of β-catenin target genes (e.g., glutathione synthase) and of the 
Wnt/Fzd receptors CTNNB1 and FZD6 were higher in the APAP-
treated mutant mice than in the treated controls 6 and 12 h after 
treatment. Similar results were obtained in the hepatectomized 
groups with or without APAP administration (Fig. 1, Table 1). In 
addition, immunohistochemical analysis showed that after 2/3 PH, 
glutathione synthase staining was higher in the mutant livers than 
in the control livers. It was also shown that β-catenin was respon-
sible for protection against APAP toxicity, as its inhibition reduced 
both the expression of β-catenin target genes and liver injury in 
APAP-treated mutant mice. Finally, in vitro transfection studies 
revealed that only miR194, and not miR192, regulates β-catenin 
signaling.59

Overall, this study has characterized the biological role of 
miR194 during drug-induced ALI. miR194 depletion can either 
promote LR after APAP overdose and 2/3 PH or protect from 
APAP-induced liver injury by upregulating β-catenin signal-
ing. These data suggest that downregulation of miR194 can pro-
mote hepatocyte proliferation after acute injury by inducing the 
β-catenin signaling pathway (Fig. 1, Table 1). Remarkably, liver 
proliferation was not spontaneously activated in the mutant mice, 
suggesting that miR194 depletion was not associated with changes 
in normal liver physiology or oncogene promotion. Therefore, 
downregulation of miR194 may serve as a valuable therapeutic 
option in acute liver injury.59

miR21 has been shown to regulate gene expression in various 
liver diseases. Specifically, higher serum concentrations of miR21 
have been found in AFL patients during the spontaneous recov-
ery phase, while its inhibition has been shown to exacerbate acute 
liver injury.96,97 Nevertheless, the role of miR21 in APAP-induced 
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liver injury is largely unknown. Therefore, recently Huffman et 
al.60 investigated the role of miR21 in APAP-induced liver injury 
using miR21 knock-out (miR21KO) mice. Their results showed 
that the mutant mice were protected from APAP-induced toxicity 
and exhibited increased LR compared to wild type (WT) mice. Al-
though liver injury was similar in both groups 6 h after treatment, 
enhanced recovery, arrest of necrosis progression, and sustained 
liver repair were observed 24 h after treatment only in the mu-
tant mice. Additionally, activation of the Wnt/β-catenin signaling 
pathway was observed at 24 h only in the APAP-treated mutant 
mice, which was associated with the increased expression of the 
β-catenin target cyclin D1.27,60 Furthermore, miR21 KO mice ex-
hibited increased PCNA (proliferating cell nuclear antigen) protein 
levels at the same time point, whereas these were unchanged in 
APAP-treated WT mice. Overall, these results suggest that miR21 
may delay LR by affecting the proliferation phase of recovery. 
Notably, increased proliferation due to miR21 overexpression has 
been demonstrated in several human cancers.98 Nevertheless, sev-
eral studies are consistent with the results obtained by Huffman et 
al. in WT mice 24 h after APAP treatment, where increased expres-
sion of miR21 was associated with impaired hepatocyte prolifera-
tion.60,99,100 Therefore, it was hypothesized that the proliferative 
role of miR21 may be tissue-specific and absent in noncancerous 
cells. Moreover, since Tgfb1 expression was found to be upregu-
lated at 24 h only in APAP-treated WT mice, which showed de-
creased expression of proliferation markers compared to mutant 
mice, it was hypothesized that miR21 inhibited LR rather than 
promoted proliferation.60

Selective autophagy has been shown to favor the repair pro-
cess after APAP intoxication by removing damaged mitochon-
dria.101 Consistent with this, Huffman et al.60 found that mutant 

mice showed stronger activation of autophagy-related genes 24 
h after APAP treatment than WT mice. This suggests that miR21 
delays the autophagic degradation of damaged organelles and the 
response to misfolded proteins, thereby impairing LR after APAP 
overdose.60 Finally, this study is the first to report that miR21 di-
rectly modulates the increased expression of the gene encoding the 
hypofibrinolytic molecule PAI1 after APAP overdose, as its de-
pletion significantly restricted this increase and thus improved the 
hypofibrinolytic state in miR21KO mice.

In summary, this study identified three signaling pathways that 
could be beneficially modulated by miR21 downregulation dur-
ing the recovery phase after APAP hepatotoxicity, namely cell re-
generation, autophagy, and coagulation homeostasis (Fig. 2, Table 
1). Although longer follow-up studies are required, these results 
suggest that downregulation of miR21 may represent a therapeutic 
means to improve LR after APAP-induced injury.

Future perspectives
miRNA deregulation is associated with liver damage, fibrosis, 
and HCC development; therefore, miRNAs represent a promis-
ing therapeutic strategy for treating liver diseases.102 Due to their 
high stability and easy detection in the bloodstream, miRNAs are 
considered superior biomarkers for early diagnosis, prognosis, and 
liver disease evaluation compared to conventional biomarkers.103 
As comorbidities can alter miRNA profiles, particularly in liver 
disease patients, high-throughput detection methods have been de-
veloped to obtain a global profile of circulating miRNAs, aiding in 
identifying a panel of miRNAs as biomarkers with improved diag-
nostic sensitivity and/or specificity.103 However, extreme caution 
is required when developing miRNA-based therapeutic options, as 

Fig. 2. Role of miRNA21 in APAP-induced liver injury. Upregulation of miR21 during APAP hepatotoxicity inhibits hepatocyte proliferation by downregulating 
the β-catenin signaling pathway. Additionally, miR21 overexpression affects liver repair by inducing changes in gene expression, leading to the downregula-
tion of autophagy and haemostasis. APAP, acetaminophen.
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miRNAs can affect multiple downstream mRNA targets, and their 
functions are largely cell-type-specific. Therefore, altering a par-
ticular miRNA may have unexpected off-target effects that should 
be considered and avoided.104 On this basis, characterizing the mo-
lecular mechanisms underlying miRNA actions is fundamental to 
improving their therapeutic efficacy. In this context, the studies 
summarized in this brief review shed light on the molecular strate-
gies employed by miRNAs to regulate LR caused by 2/3 PH or 
APAP overdose, aiding in the development of new therapeutic ap-
proaches for liver diseases associated with impaired LR. For exam-
ple, the studies reported here have advanced the understanding of 
the molecular mechanism underlying the activity of circRNAs.44,58 
This is particularly important because, although circRNAs play an 
active role in various liver diseases,105 their therapeutic application 
is currently limited by the few reports on their mechanism of action 
and upstream regulatory targets.105 In addition, it has been shown 
how MSC-derived EVs could improve LR by releasing miRNAs 
inhibiting gene expression to promote an anti-inflammatory re-
sponse or by releasing miRNA-regulatory factors, such as circR-
NAs.57,58 Remarkably, administration of MSCs-EVs was found to 
improve LR without inducing hepatotoxic effects, suggesting their 
potential utility as therapeutic agents for tissue repair and function-
al recovery in LR. Recently, there has been increasing evidence for 
the importance of MSC-derived EVs in mediating the biological 
functions of MSCs.87,88 EVs have low toxicity and high stability 
and are preferentially taken up by the liver, making them attractive 
delivery vehicles for miRNA-based therapies.103 Moreover, it has 
been shown that exosomal miRNAs promote the progression of 
liver disease.106 Therefore, interrupting specific miRNA transport 
mediated by EVs has been proposed as a novel therapeutic strategy 
for the treatment of liver disease.103 However, some unanswered 
questions limit the therapeutic use of EVs, such as their kinetics, 
toxicity, off-target effects, and uptake.35 In this context, the recent 
availability of genetic tools, such as reporter mice and novel re-
porters for exosome secretion and uptake in living cells, as well as 
the identification of highly sensitive exosome isolation and puri-
fication protocols, could enable the development of new therapies 
for liver diseases.107 Finally, protection against APAP-induced ALI 
is associated with the downregulation of miR194 and miR21 ex-
pression.59,60 Interestingly, antisense oligonucleotide (ASO)-based 
therapies targeting miR21 are currently in clinical trials to treat 
pathologic conditions such as cardiovascular disease.108 ASOs are 
used to regulate the expression of mRNAs and noncoding RNAs. 
However, many aspects of the clinical application of ASO-based 
therapies still need clarification. The major hurdles to overcome in 
ASO-based therapeutic strategies are reducing potential off-target 
and unwanted on-target effects, improving potential immunostim-
ulatory effects, reducing liver and kidney toxicity, and improving 
delivery to disease-specific sites. Therefore, further studies are 
needed to improve their efficacy as therapeutic agents.108

Overall, although many challenges remain, these studies have 
provided a deeper understanding of molecular targets of miRNAs 
that contribute to developing new liver disease therapies.

Conclusions
The studies reported here demonstrate that miRNAs are deeply 
involved in controlling LR by directly and indirectly regulating 
the expression of genes associated with cell proliferation and liver 
repair. As for the 2/3 PH model, miRNA-mediated regulation of 
gene expression was observed in each phase of LR. Overall, modi-
fications in miRNAs during the initiation and proliferation phases 

result in both inhibition and activation of proliferation signaling. 
Since the initiation phase is characterized by refractoriness to pro-
liferative stimuli, the activation of inhibitory signals is consist-
ent, while the activation of proliferative signals is less clear. In 
this context, it is important to note that changes during this phase 
should be considered beneficial for both cell cycle entry and prepa-
ration for entry. In particular, the activation of proliferation genes 
by miRNAs in the initiation phase might mediate processes in-
volved in LR beyond hepatic cell proliferation, such as metabolic 
remodeling associated with liver resection.

On the contrary, the integration of positive and negative prolif-
eration signals during the proliferation phase is crucial for ensur-
ing a safe and stable LR. Indeed, activating inhibitors during this 
phase may prevent an overshooting of the regeneration response 
that could lead to adverse effects such as HCC development. 
Therefore, although their effect on LR needs further characteriza-
tion, these miRNAs might be considered potential novel targets for 
regulating LR and HCC development.

Compared to the other two phases, molecular mechanisms as-
sociated with the termination phase of LR have been less studied. 
Given the risks associated with sustaining the regeneration re-
sponse, characterizing these mechanisms is urgently needed. The 
reviewed studies indicate that the upregulation of miRNAs pro-
motes LR termination by triggering pro-apoptotic signaling while 
inhibiting proliferation signaling.

Lastly, two recent studies discussed here demonstrate that miR-
NAs may serve as therapeutic tools for treating APAP-mediated 
liver injury.

Although a deeper understanding of miRNA-dependent mo-
lecular strategies to regulate LR is necessary, these studies have 
helped identify new potential molecular targets for the diagnosis 
and therapy of liver disease.
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